海豹油和ADP相关科学文献清单
年 | 作者 | 实验模型 | ADP和海豹油对健康的主要影响 | 文档 |
新陈代谢 | ||||
2010 | Kaur et al. | SD大鼠 | 摄入DPA可使所有组织中的DPA含量和肝脏中的DHA含量升高。DPA还会在肝脏、脂肪组织、心脏和骨骼肌中部分转化为EPA。与EPA相比,DHA和DPA在心脏和骨骼肌中的最高吸收量表明这些多不饱和脂肪酸(PUFA)在此种组织中发挥着重要的功能。 | |
2011 | Kaur et al. | 大鼠 | 数据表明,加入含有少量DPA(加入EPA和DHA亦然)的肝窦细胞可调控肝细胞中脂肪合成相关基因和关键蛋白的水平。 | |
2011 | Holub et al. | SD大鼠 | DPA能使心脏和肝脏中的DPA含量升高,还能提高EPA的含量,其中肾脏中的逆转化尤为显著。膳食DPA的血清降脂能力及其在肾脏中对其衍生EPA的影响还需进一步验证。 | |
2013 | Kaur et al. | Wistar大鼠 | DPA和DHA在6小时中发生的β-氧化显著小于EPA,且DPA和DHA在骨骼肌和心脏中的吸收率比EPA更高。 | |
2013 | Miller et al.[1] | 健康女性 (21-30岁) | 进行4天的DPA补充后,血浆或红细胞(RBC)脂质中的EPA、DPA和DHA含量升高,而补充EPA仅使EPA含量升高。 | N/A |
2013 | Linderborg et al.[2] | 健康女性 (20-30岁) | EPA和DPA在餐后的不同代谢方式。与EPA相比,DPA可以显著降低血浆中的乳糜微粒。 | N/A |
2014 | Ghasemi Fard et al. | SD大鼠 | 粪便中的DPA排泄量比EPA更大。然而,EPA和DPA以相似的方式提高了肝脏中的EPA、DPA和长链欧米伽3多不饱和脂肪酸类(PUFAs)的含量。 | |
神经保护 | ||||
2011 | Kelly et al.[3] | 年轻大鼠(3-4个月)和老年大鼠(20-22个月) | EPA可提高年轻大鼠和老年大鼠体内皮质组织的DPA和DHA含量,以及老年大鼠体内的EPA含量,而DPA可提高年轻大鼠和老年大鼠体内的DPA含量,以及年轻大鼠体内的DHA含量。EPA和DPA以相似的方式作用于老年大鼠,通过下调其年龄相关小胶质细胞的活力,使其鞘磷脂酶和胱天蛋白酶3的活力下降,并重建其长期增强能力,改善其空间记忆。 | N/A |
抗炎作用 | ||||
2014 | Aursnes et al. | 小鼠嗜中性粒细胞和人类巨噬细胞 | DPA衍生的PD1n-3 DPA显著降低小鼠腹膜炎期间的中性粒细胞聚集,并刺激巨噬细胞发挥吞噬作用;也能清除人体内凋亡的嗜中性粒细胞,二者均与DHA衍生的PD1类似。 | |
2014 | Tungen et al. | 人类巨噬细胞 | DPA衍生的MaR1n-3DPA刺激巨噬细胞发挥吞噬作用;也能清除人体内凋亡的嗜中性粒细胞,二者均与DHA衍生的PD1类似。 | N/A |
2014 | Caroline Morin[4] | Wistar大鼠 | 补充DPA能够调节欧米伽3/ω-6脂肪酸的摄入量,从而对DPA代谢物提供抗炎和抗增殖能力。MAG-DPA表示稳定的化合物,以它为前体可以产生多种介体如消散素和保护素,而这两者都可以减轻细胞炎症反应。因此,DPA可能是缓解以过度气道炎症为特征的肺部疾病的重要因素。 | |
2015 | Skulas-Ray | 健康人(20-65岁) | 含有DPA的红细胞数量的不足与C-反应蛋白(CRP)和甘油三酯的过量有关。这些关联可能对预防动脉粥样硬化和慢性炎性疾病具有重要影响。 | |
2015 | Caroline Morin | 完全弗氏佐剂大鼠(CFA) | 随着CFA大鼠关节炎的发展和严重性的升高,EPA和DPA含量出现了显著的下调。在服用EPA和DPA后,与对照组相比,CFA大鼠的促炎细胞因子和肿瘤坏死因子的血浆水平显著降低。 | |
心脏健康 | ||||
1996 | Aursnes et al. | 大鼠 | 对内皮细胞(EC)迁移产生最大刺激的DPA预处理浓度(0.5ug / ml),是EPA预处理浓度(5.0ug / ml)的十分之一,表明DPA是EC迁移的高效刺激剂/ ... /这些数据表明EPA对EC迁移的刺激作用通过DPA发生,而DPA可以作为强大的抗动脉粥样硬化因子。 | N/A |
2010 | Neil J. Mann | 健康人(20-50岁) | 补充海豹油的益处优于金枪鱼油,后者的欧米伽3含量与海豹油相仿,但是DHA含量更高,EPA含量更低,而DPA含量极少。我们的研究结果表明直接摄入的DPA或EPA在体内转化生成的DPA,可能在降低心血管疾病风险的方面比DHA更有效。/.../本研究表明,海豹油可用于改良食品,为健康人提供疾病预防作用,同时作为心血管疾病或血栓患者的治疗辅助措施。 | |
2009 | Phang et al [5] | 人类血小板 (离体培养) | 与DPA和DHA的欧米伽3脂肪酸相比,AEP在减少血小板聚集方面效果更显著。然而,不同性别观察到的效果也不同:对于女性,所有三种欧米伽3脂肪酸都是有效的,但对于男性,EPA比DPA和DHA更有效。 | N/A |
降低甘油三酯水平 | ||||
2009 | Meyer | 高甘油三酯血症 | 血浆甘油三酯水平在安慰剂组中保持不变,而在鱼油和海豹油组中分别观察到7和14%的降低(P < 0.05)。海豹油和鱼油组的收缩压分别改善8和5 mmHg(P < 0.05)。与安慰剂组相比,补充海豹油后平均动脉压显著降低(P < 0.005)。这些结果表明,在降低血浆甘油三酯和血压方面,海豹油与鱼油一样有效。 | |
其他 | ||||
1999 | Xiao W et al. | 微乳液 | 海豹油中的欧米伽3类脂肪酸比鱼油中的更稳定,且不易氧化。 | N/A |
2011 | Cheema | BioF1B仓鼠 | 与鱼油不同,海豹油在BioF1B仓鼠体内不诱导血浆乳化。与鱼油饮食相比,海豹油饮食组血浆和肝脏中的脂质水平较低,肝脏中血浆和氧化应激水平也相应下降。这些结果表明,体内脂蛋白脂酶缺乏(LPL)的人群选用海豹油会比用鱼油对健康更有益。 | |
2015 | Evan Lewis | 男运动员 | 21天补充N-3系多不饱和脂肪酸(PUFA)可增加N-3系多不饱和脂肪酸(PUFA)EPA的血浆浓度。神经肌肉功能会随着肌肉强度的增加而得到改善,并且随着肌力损失的减轻而维持多次冲刺的能力。这是最早选择海豹油,而非常见的鱼油研究欧米伽3脂肪酸补充效果的研究之一。选择海豹油是因为哺乳动物(海豹)欧米伽3脂肪链主要连接在三酰基甘油分子的sn-1和sn-3位,与鱼油的sn-2位恰好相反。sn-3位脂肪链首先被舌下的脂肪酶水解,而sn-1位脂肪链在小肠中水解,sn-2脂肪酸则保留到最后的酯化环节。这种差异使得N-3海豹油被人体消化得更快,在非肝组织中的吸收量更高。 |
- 心脏健康 [i] [ii] [iii] [iv]
- 关节/关节炎 [viii] [ix] [x]
- 炎症 [xiv] [xv] [xvi] [xvii] [xviii]
- 呼吸健康 [xxiii]
- 免疫系统 [xxv]
- 怀孕 [xxviii] [xxix] [xxx]
- 产后健康 [xxxiv]
- 婴儿发育 [xxxvi] [xxxvii] [xxxviii] [xxxix]
- 注意力缺陷多动障碍 [xli]
- 语言 [xliv]
- 学习 [xlvi]
- 降低甘油三酯水平 [v] [vi] [vii]
- 认知健康 [xi] [xii] [xiii]
- 眼部健康 [xix] [xx] [xxi] [xxii]
- 前列腺健康 [xxiv]
- 肠道健康 [xxvi] [xxvii]
- 阿尔兹海默症 [xxxi] [xxxii] [xxxiii]
- 脑部健康 [xxxv]
- 高血压 [xl]
- 情绪,抑郁和焦虑 [xlii] [xliii]
- 乳腺健康 [xlv]
- 皮肤 [xlvii] [xlviii]
- [i] Kris-Etherton PM, Harris WS, Appel LJ: Omega-3 fatty acids and cardiovascular disease: new recommendations from the American Heart Association. Arterioscler Thromb Vasc Biol 2003, 23: 151– 152.
- [ii] Flock M, Kris-Etherton P. Dietary Guidelines for Americans 2010: implications for cardiovascular disease. Curr Atheroscler Rep 2011 Dec; 13(6): 499-507.
- [iii] Laidlaw M, et al. A randomized clinical trial to determine the efficacy of manufacturers’ recommended doses of omega-3 fatty acids from different sources in facilitating cardiovascular disease risk reduction. Lipids Health Dis 2014 Jun 21; 13:99.
- [iv] EFSA 212 : European Food Safety Authority. Scientific Opinion: Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA Journal 2012;10(7):2815. [Internet]. [Consulté le 8 juillet 2013]. Disponible à : http://www.efsa.europa.eu/en/efsajournal/doc/2815.pdf
- [v] Hartweg J, Perera R, Montori V, et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008 Jan 23; (1):CD003205.
- [vi] Oh R. 2005. Practical applications of fish oil (Ω-3 fatty acids) in primary care. The Journal of the American Board of Family Practitioners 18(1):28-36.
- [vii] Balk E, Chung M, Lichtenstein A, Chew P, Kupelnick B, Lawrence A, DeVine D, Lau J. 2004. Effects of omega-3 fatty acids on cardiovascular risk factors and intermediate markers of cardiovascular disease. Summary, Evidence Report/Technology Assessment No. 93. AHRQ Publication No. 04-E010-1. Rockville (MD): Agency for Healthcare Research and Quality.
- [viii] Kremer, J.M. 2000. n23 Fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr 2000;71(suppl):349S–51S.
- [ix] Olendzki B, Leung K, Van Buskirk S, et al. Treatment of rheumatoid arthritis with marine and botanical oils: influence on serum lipids. Evid Based Complement Alternat Med 201; 2011: 827286.
- [x] Volker D, Fitzgerald P, Major G, Garg M. 2000. Efficacy of fish oil concentrate in the treatment of rheumatoid arthritis. The Journal of Rheumatology 27(10):2343-2346.
- [xi] Gadoth, N. On fish oil and omega-3 supplementation in children: The role of such supplementation on attention and cognitive dysfunction. 2008. Brain Dev. 30: 309-312.
- [xii] Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, Lodi L. 2005a. Cognitive and physiological effects of omega-3 polyunsaturated fatty acid supplementation in healthy subjects. European Journal of Clinical Investigation 35(11):691-699.
- [xiii] van de Rest O, Geleijnse JM, Kok JF, van Staveren WA, Dullemeijer C, OldeRikkert MGM, Beekman ATF, de Groot CPGM. 2008. Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology 71(6):430-438.
- [xiv] Simopoulos, A. Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. The Center for Genetics, Nutrition and Health, Washington, D.C (2002)
- [xv] Walton, A. J. E., Snaith, M. L., Locniskar, M., Cumberland, A. G., Morrow, W. J. W. & Isenberg, D. A. (1991) Dietary fish oil and the severity of symptoms in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 50: 463–466
- [xvi] Calder P. N-/ Plyunsaturated fatty acids, inflammation, and inflammatory diseases. Am/ Clin Nutr 2006; 83:S1505-1519
- [xvii] Maroon J, Bost J. Omega-3 Fatty Acids (fish oil) as an inflammatory: an alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surg Neurol 2006; 65: 326-331.
- [xviii] Barham JB, Edens MB, Fonteh AN, et al. Addition of eicosapentaenoic acid to gamma-linolenic acid supplemented diets prevents serum arachidonic acid accumulation in humans. J Nutr 2000; 130:1925-1931.
- [xix] Seddon, J. et al. Dietary fat and risk for advanced age-related macular degeneration. 2001. Arch. Ophthalmol. 109:1191-1199.
- [xx] Mills MD. 1999. The eye in childhood. American Family Physician 60:907-918
- [xxi] European Food Safety Authority. 2008. Scientific substantiation of a health claim related to Docosahexaenoic Acid (DHA) and Arachidonic Acid (ARA) and support of the neural development of the brain and eyes pursuant to Article 14 of Regulation (EC) No 1924/2006. The EFSA Journal 794:1-11.
- [xxii] Hodge W, Barnes D, Schachter HM, Pan Y, Lowcock EC, Zhang L, Sampson M, Morrison A, Tran K, Miguelez M, Lewin G. 2005. Effects of Omega-3 Fatty Acids on Eye Health. Summary, Evidence Report/Technology Assessment No. 117. AHRQ No. 05-E008-2. Rockville (MD): Agency for Healthcare Research and Quality.
- [xxiii] Mickeborough, T, Lindley M, Montgomery G. Effect of fish oil-derived omega-3 polyunsaturated fatty acids supplementation on exercise-induced bronchoconstriction and immune function in athletes. Phys Sportmed 2008 Dec; 36 (1): 11-7.
- [xxiv] Rose DP, Connolly JM: Omega-3 fatty acids as cancer chemo-preventive agents. Pharmacol Ther 83: 217–244, 1999
- [xxv] Nakamura K, Kariyazono H, Komokata T, Hamada N, Sakata R, Yamada K. 2005. Influence of preoperative administration of ω-3 fatty acid-enriched supplement on inflammatory and immune responses in patients undergoing major surgery for cancer. Nutrition 21(6):639-645
- [xxvi] ANTI M, ARMELAO F, MARRA G, PERCESEPE A, BARTOLI GM, PALOZZA P, PARRELLA P, CANETTA C, GENTILONI N, DE VITIS I: Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterology 107: 1709-1718, 1994
- [xxvii] Belluzzi A, Brignola C, Campieri M, et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 1996; 334:1557-1560.
- [xxviii] Hanebutt F, Demmelmair H, Schiessl B, et al. Long-chain poluunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr 2008 Oct; 27 (5): 685-93.
- [xxix] Helland IC, Smith L, Saarem K, et al. Maternal supplementation with very long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 2003; 111:39-44.
- [xxx] Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, Prescott SL. 2003. Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. Journal of Allergy and Clinical Immunology 112(6):1178-1184.
- [xxxi] Soderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421– 425
- [xxxii] Yurko-Mauro K. Cognitive and Cardiovascular Benefits of Docosahexaenoic Acid in Aging and Cognitive Decline. Curr Alzheimer Res 2010 May 1;7(3):190-6.
- [xxxiii] Wang W, Shinto L, Connor WE, Quinn JF. 2008. Nutritional biomarkers in Alzheimer’s disease: the association between carotenoids, n-3 fatty acids, and dementia severity. Journal of Alzheimers Disease 13(1):31-38.
- [xxxiv] Da Rocha C, Kac G. High dietary ratio of omega-6 to omega-3 polyunsaturated acids during pregnancy and prevalence of post-partum depression. Matern Child Nutr 2012 Jan;8(1):36-48.
- [xxxv] Uauy, R., Hoffmann, D. R., Peirano, P., Birch, D. G. & Birch, E. E. Essential fatty acids in visual and brain development (2001) Lipids 36, 885–895.
- [xxxvi] Marszalek JR, Lodish HF. 2005. Docosahexaenoic acid, fatty acid-interacting protein, and neuronal function: breastmilk and fish are good for you. Annual Review of Cellular and Developmental Biology 21:633-657
- [xxxviii] Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J. 2003. Consumption of fish and n-3 fatty acid and risk of incident Alzheimer disease. Archives of Neurology 60(7):940-946.
- [xxxix] Mills MD. 1999. The eye in childhood. American Family Physician 60:907-918
- [xl] Appel LJ, Miller ER III, Seidler AJ, Whelton PK. Does supplementation of diet with ’fish oil’ reduce blood pressure? A meta-analysis of controlled clinical trials. Arch Intern Med. 1993;153:1429 –1438.
- [xli] Gow R, Matsudaira T, Taylor E, et al. Total red blood cell concentrations of omega-3 fatty acids are associated with emotion-elicited neural activity in adolescent boys with attention-deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 2009 Feb-Mar;80(2-3):151-6.
- [xlii] Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Melt-zer HY: Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res 1999; 85:275–291
- [xliii] Buydens-Branchey L, Branchey M, Hibbeln J. Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers. Prog Neuropsychopharmacol Biol Psychiatry. 2008 Feb 15;32(2):568-75. Epub 2007 Nov 1.
- [xliv] Patrick L, Salik R. The effect of essential fatty acid supplementation on language development and learning skills in autism and Aspergers syndrome. Autism-Aspergers Digest 2005;Jan-Feb:36-37.
- [xlv] Terry, P. et al., 2002. Nutr. Cancer 44:1-6.
- [xlvi] Patrick L, Salik R. The effect of essential fatty acid supplementation on language development and learning skills in autism and Aspergers syndrome. Autism-Aspergers Digest 2005;Jan-Feb:36-37.
- [xlvii] Soyland E, Funk J, Rajka G, et al. Dietary supplement of n-3 fatty acids to patients with atopic dermatitis. A multi-center stury. Br J Dermatol 1994; 130:757-764.
- [xlviii] McCusker M, Grant-Kels J. Healing fats of the skin: the structural and immunologic roles of the Omega-6 and omega-3 fatty acids. Clin Dermatol 2010 Jul-Aug; 28(4):440-51.